首页> 外文OA文献 >On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions
【2h】

On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

机译:关于符号超尺度,Cotree表示和Cograph边缘   分解和分区

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Symbolic ultrametrics define edge-colored complete graphs K_n and yield asimple tree representation of K_n. We discuss, under which conditions this ideacan be generalized to find a symbolic ultrametric that, in addition,distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus,yielding a simple tree representation of G. We prove that such a symbolicultrametric can only be defined for G if and only if G is a so-called cograph.A cograph is uniquely determined by a so-called cotree. As not all graphs arecographs, we ask, furthermore, what is the minimum number of cotrees needed torepresent the topology of G. The latter problem is equivalent to find anoptimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph(V,E_i) of G is a cograph. An upper bound for the integer k is derived and itis shown that determining whether a graph has a cograph 2-decomposition, resp.,2-partition is NP-complete.
机译:符号超度量定义边色完整的图K_n,并产生K_n的简单树表示。我们讨论了在什么条件下可以推广这一思想以找到一种符号超度量,该符号超度量此外还区分任意图G =(V,E)的边缘和非边缘,从而产生了G的简单树表示。仅当G是所谓的cograph时,才能为G定义这样的符号超计量.cograph由所谓的cotree唯一地确定。由于并非所有图都是cograph,因此,我们进一步询问代表G拓扑所需的cotree的最小数目。后一个问题等效于找到E的最优cograph边k分解{E_1,...,E_k},因此G的每个子图(V,E_i)是一个图。得出整数k的上限,表明确定图是否具有图2分解,2分区是NP完全的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号